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Abstract

Reconstructing detailed 3D object shapes from single001
2D images is a challenging computer vision task with002
many important applications, such as creating immersive003
augmented reality (AR) experiences, enabling intelligent004
robotic interactions, and generating realistic 3D assets for005
multimedia. While recent deep learning approaches have006
made progress, faithfully recovering intricate local geomet-007
ric details like sharp edges and thin structures, while si-008
multaneously preserving coherent global 3D structures, re-009
mains an open challenge. In this work, we propose Sculpt-010
Former, a transformer-boosted framework for multi-scale011
3D mesh reconstruction from single-view inputs. Inspired012
by the coarse-to-fine approach of Pixel2Mesh, our archi-013
tecture enhances the deformation process with transformer014
components at the global, intermediate, and local levels.015
Specifically, a global transformer attends to coarse, holistic016
shape features to control the overall 3D structure predic-017
tion while intermediate and local graph-based transformer018
blocks progressively refines detailed local geometry by at-019
tending to lower point features as the 3D mesh is upsam-020
pled. Through evaluations on 3D objects taken from 13 ob-021
ject categories in the ShapeNetCore dataset, we find that022
our approach successfully generates more accurate 3D re-023
constructions compared to Pixel2Mesh.024

1. Introduction025

Reconstructing 3D models of objects from 2D images has026
many downstream applications such as creating realistic027
and immersive AR/VR experiences and enabling virtual ob-028
ject placement and interaction. 3D shape reconstruction can029
also aid in object recognition, grasping, and manipulation030
tasks for robotic systems, enabling more efficient and accu-031
rate interactions with the physical world.032

1.1. Related Work033

Current approaches for single-view 3D shape reconstruc-034
tion from 2D images can be broadly categorized into voxel-035
based, mesh-based, and point cloud-based methods. Voxel-036
based techniques represent the 3D shape as a voxel grid037

and employ convolutional neural networks (CNNs) or other 038
deep learning models to predict the occupancy value of each 039
voxel given the input 2D image, as explored in works such 040
as 3D-R2N2 [3] and OGN [9]. Alternatively, mesh-based 041
methods directly predict the 3D mesh representation com- 042
prising vertices and faces that form the object’s surface, 043
with approaches like Pixel2Mesh [10] and AtlasNet [4] be- 044
ing notable examples. Point cloud-based methods predict 045
an unstructured set of 3D points representing the object’s 046
geometry from the 2D input, such as PSGN [5]. 047

However, these 3D representations also face significant 048
limitations. Voxel-based approaches can produce high- 049
resolution 3D shapes but are computationally inefficient, es- 050
pecially for large voxel grids, and often exhibit discretiza- 051
tion artifacts manifesting as blocky surfaces. Mesh-based 052
predictions are more efficient but can struggle to generate 053
topologically-correct meshes, especially for geometrically 054
complex shapes. Point cloud outputs lack explicit surface 055
information and may suffer from non-uniform point distri- 056
butions. 057

Factors such as occlusions, varying viewpoints, cluttered 058
backgrounds, and illumination conditions further exacer- 059
bate the complexity of the task. Many current techniques 060
rely heavily on strong priors from object categories, hin- 061
dering their ability to generalize well to novel object types. 062
Moreover, the lack of coherence and temporal stability in 063
predictions poses challenges for applications requiring con- 064
sistent reconstructions. Developing an approach capable of 065
robustly reconstructing accurate, high-resolution 3D shapes 066
across diverse real-world settings while preserving fine ge- 067
ometric details remains an open research problem. Novel 068
neural architectures and modeling techniques are necessary 069
to fully unlock the potential of single-view 3D shape recon- 070
struction from limited 2D data. 071

1.2. Our Method 072

While recent years have seen significant progress in single- 073
view 3D shape reconstruction, a major ongoing challenge 074
involves simultaneously capturing accurate holistic shape 075
information as well as intricate local geometric details from 076
just a single 2D image [1, 5]. Many existing methods 077
excel at reconstructing the overall coarse 3D structure of 078
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an object but fail to faithfully recover fine-grained geome-079
try like sharp edges, thin structures, complex concavities,080
and precise surface details [2]. Conversely, techniques that081
aim to generate highly-detailed 3D geometry often struggle082
with maintaining global coherence and producing plausible083
holistic 3D shapes [7].084

This limitation arises from the inherent difficulty in ef-085
fectively leveraging the limited visual cues present in a sin-086
gle 2D observation to infer precise 3D shape information087
at both macro and micro scales. Additionally, existing 3D088
representation formats like voxel grids [3], point clouds089
[5], and mesh surfaces [10] have inherent tradeoffs in bal-090
ancing reconstruction quality, memory efficiency, and geo-091
metric expressiveness. Recently, transformer-based archi-092
tectures [6] have shown promise in integrating local and093
global information for coherent 3D shape generation via094
self-attention mechanisms that can capture long-range re-095
construction features while also focusing on fine details.096

Developing architectures that can seamlessly fuse 3D097
shape priors at multiple levels of detail to produce coher-098
ent, high-fidelity 3D reconstructions remains a challenge.099
To address this, we propose a novel framework that com-100
bines the strengths of mesh-based representations and trans-101
formers. Our architecture uses a transformer encoder to102
extract rich contextual features from the input 2D image,103
while the transformer decoder generates the 3D voxel rep-104
resentation in an autoregressive manner. Crucially, our de-105
coder employs a hybrid self-attention mechanism that at-106
tends to both global, holistic shape information as well as107
local, fine-grained geometric details. This allows our model108
to simultaneously keep track of varying levels of overall 3D109
structure as well as intricate local geometry, overcoming a110
previous inability to maintain shape coherence at multiple111
levels of detail at once, and outperforming prior voxel and112
mesh-based methods on this challenging 3D reconstruction113
task.114

2. Methods115

2.1. Base Architecture116

In this paper, we will be building off of the existing117
Pixel2Mesh architecture. Pixel2Mesh [10] is a graph-based118
deep learning framework designed to generate 3D mesh119
models directly from a single 2D image input. It employs120
two main components that work in parallel, the first being121
VGG-16, which serves to extract features from the input122
2D image, and the second being a graph convolutional neu-123
ral network (GCN) that deforms an initial ellipsoid mesh124
towards the target 3D shape in a coarse-to-fine manner, ini-125
tially starting with fewer vertices and higher-level input fea-126
tures. The GCN operates on the mesh vertices and edges,127
capturing local geodesic information to progressively re-128
fines the mesh through the addition of new vertices to in-129

Figure 1. SculptFormer architecture with hierarchical transformer
module

crease the representational power of the mesh and succes- 130
sive deformation stages guided by subsequent, lower-level 131
2D image features. 132

We propose SculptFormer, a new framework that extends 133
Pixel2Mesh by replacing VGG-16 with Resnet50 and inte- 134
grating transformer blocks to better model global to local 135
shape information for robust multi-scale 3D reconstruction. 136
VGG-16 was replaced with Resnet50 to increase the stabil- 137
ity of image feature extraction and to avoid the vanishing 138
gradients problem through residual connections. The in- 139
troduction of transformer encoder-decoder modules attend 140
to varying levels of the GCN, enhancing long-range fea- 141
ture learning and contextual reasoning. Finally, we design 142
new multi-scale loss functions tailored for transformers that 143
leverage attention maps to improve vertex positioning and 144
local surface geometry reconstruction. 145

We evaluate SculptFormer on a subset of 13 object cat- 146
egories taken from the larger ShapeNetCore dataset [1] 147
which contains around 48,600 3D models across 55 object 148
categories. These 13 object categories were previously used 149
to evaluate Pixel2Mesh [10], enabling direct comparisons of 150
our performance gains against their mesh deformation ap- 151
proach using standard metrics like Chamfer distance and F- 152
Score. The multi-representation support with ground truth 153
meshes, voxels, point clouds, and renderings also facili- 154
tates comprehensive geometric evaluations beyond overall 155
shape similarity. Additionally, ShapeNetCore’s scale and 156
breadth test generalization across diverse 3D geometries, al- 157
lowing for rigorous validation of our transformer architec- 158
ture’s multi-scale 3D understanding capabilities while situ- 159
ating our results in the context of prior work. 160

2.2. Hierarchical Transformer Modules 161

We propose a hierarchical design with multiple transformer 162
modules operating at different scales to effectively integrate 163
both global and local shape information. The first is the 164
global transformer module, which applies a multi-headed 165
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self-attention mechanism across all mesh vertices and im-166
age features extracted after the third convolutional block in167
Resnet50. This self-attention allows each vertex to attend to168
representations from all other vertices in the mesh, aggre-169
gating global context to help maintain overall 3D structure,170
proportions, and vertex relationships. The outputs of this171
global self-attention are then passed through a graph resid-172
ual block containing graph convolutional layers. This en-173
hances the global features by also incorporating local infor-174
mation from each vertex’s neighboring regions on the mesh175
surface.176

After this initial coarse processing by the global trans-177
former, an intermediate transformer module further bridges178
global and local contexts through a dual-level self-attention179
scheme. It captures not just single vertex relationships, but180
relationships between a vertex and clusters of neighboring181
vertices. This multi-scale attention allows the model to con-182
nect localized geometries to the broader shape structure.183
The intermediate transformer also incorporates positional184
encodings to maintain spatial consistency as the 3D geom-185
etry gets progressively refined.186

Finally, the local transformer module operates at the187
most local level to recover intricate geometric details. It188
uses vector attention, a self-attention variant that efficiently189
scales to larger mesh resolutions by attending within local190
neighborhoods around each vertex instead of globally. This191
localized self-attention mechanism precisely adjusts vertex192
positions based on their surrounding context, incrementally193
adding details like sharp edges, corners, and thin structures194
missed by previous coarser stages. The hierarchical trans-195
former architecture allows SculptFormer to coherently in-196
tegrate multi-scale shape information, capturing the global197
3D structure and intricate local geometry from just the 2D198
image input.199

3. Experimental Results And Analysis200

Implementation Details Our input images have dimen-201
sions of 127×127 pixels with no backgrounds. We use the202
Adam optimizer with a batch size of 8, an initial learn-203
ing rate of 1e−4, a learning rate decay of 0.3 every 30204
epochs. We train all modules, including Resnet50 and all205
transformers, end-to-end for 90 epochs. The resulting el-206
lipsoid outputted by the last transformer block consists of207
8192 vertices, rather than the 2466 vertices in the original208
Pixel2Mesh paper. The training process consumed around209
16 hours on 8 A100 GPUs.210

Dataset To evaluate the quality of our 3D mesh recon-211
structions, we report results on the aforementioned subset of212
13 object categories taken from the ShapeNetCore dataset213
using widely-adopted quantitative metrics. We follow the214
standard dataset splits, using 70 percent for training, 10 per-215
cent for validation, and the remaining 20 percent for testing.216

Metrics Our first key metric is Chamfer Distance (CD),217

which measures the relative distance of points sampled from 218
the predicted 3D mesh surface to points on the surface of the 219
ground truth object. It is calculated as the average of two 220
symmetric distance terms - the sum of squared distances 221
from each predicted mesh point to its nearest neighbor on 222
the ground truth surface, and vice versa. A lower Chamfer 223
Distance indicates the predicted mesh vertices are in close 224
proximity to the true surface, capturing precise geometric 225
details faithfully. 226

We also report the F-Score (F1), which evaluates the 227
overall similarity between the predicted and ground truth 228
3D shape volumes. It is computed based on the intersection- 229
over-union (IoU) of the predicted and ground truth occu- 230
pancies, essentially measuring how well the predicted mesh 231
aligns with the true solid shape as opposed to just the sur- 232
face. Higher F1 scores denote better overall shape coher- 233
ence and completeness in the 3D reconstruction. While 234
Chamfer Distance focuses specifically on surface accuracy, 235
and F-Score captures shape similarity more holistically, us- 236
ing both metrics in conjunction allows us to comprehen- 237
sively analyze our method’s ability to reconstruct high- 238
fidelity 3D meshes preserving intricate geometric details as 239
well as plausible global structures from just single-view 2D 240
image input. 241

Qualitative Figure 2 showcases representative qualita- 242
tive results directly comparing the 3D mesh reconstruc- 243
tions from our SculptFormer approach against the origi- 244
nal Pixel2Mesh framework [1] and the ground truth shapes 245
from ShapeNetCore. Across all examples spanning dif- 246
ferent object categories like airplanes, tables, cabinets and 247
lamps, we can clearly see that SculptFormer generates sig- 248
nificantly higher-fidelity 3D meshes better preserving intri- 249
cate geometric details. 250

For the airplane model, our reconstruction faithfully re- 251
covers the thin wings, engine nacelles and horizontal sta- 252
bilizers that appear smoothed over in Pixel2Mesh’s output. 253
The table example highlights SculptFormer’s ability to cap- 254
ture precise surface patterns like the ribbed tabletop design. 255
Our method also excels at reconstructing objects with com- 256
plex curved geometries like the cabinet model, producing 257
much crisper edges and handles compared to Pixel2Mesh. 258
Beyond improved detail preservation, our 3D mesh predic- 259
tions also exhibit more plausible and coherent global struc- 260
tures adhering to the overall shape proportions. This can be 261
seen in the lamp example, where Pixel2Mesh’s output ap- 262
pears distorted, while SculptFormer faithfully reconstructs 263
the accurate curved geometry of the lamp base and shade 264
components. Crucially, our transformer-based coarse-to- 265
fine architecture allows seamlessly integrating fine detail 266
recovery within a coherent global 3D understanding, over- 267
coming trade-offs in previous techniques. The model is able 268
to dynamically focus on different shape scales - first ap- 269
proximating an overall plausible 3D structure grounded in 270
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Figure 2. Qualitative results of meshes reconstructed using Sculpt-
Former

Figure 3. Qualitative results of meshes from Pixel2Mesh. Left two
columns are ground truth while right two columns are outputs

the image context, before progressively adding precise local271
geometric details guided by both the image features and its272
growing 3D shape understanding.273

Quantitative The quantitative results highlight Sculpt-274
Former’s significant geometric accuracy gains over the275
Pixel2Mesh baseline across most object categories in the276
challenging ShapeNetCore dataset. Looking at the Cham-277
fer Distance (CD) results in Table 1, which directly mea-278
sure mesh surface precision, our method achieves substan-279
tially lower CD values indicating much higher-fidelity detail280
preservation. For geometric structures like airplane wings281
(CD 0.139 vs 0.477) and thin components like rifle barrels282
(0.274 vs 0.453), SculptFormer demonstrates over 60 per-283
cent lower CD compared to Pixel2Mesh.284

For several categories like rifles (0.4664 vs 0.8347) and285
phones (0.5505 vs 0.8286), we also see SculptFormer out-286
performing Pixel2Mesh in terms of the F-Score metric.287
However, it’s important to note that the F-Score calcula-288
tion was conducted on a limited sample of just 5 exam-289
ples per object category due to time and computational con-290
straints during our evaluations. This very small sample size291
may not adequately capture the full performance distribu-292

SculptFormer (ours) Pixel2Mesh

Vessel 0.228 0.670

Cabinet 0.169 0.381

Table 0.172 0.498

Chair 0.170 0.610

Rifle 0.274 0.453

Plane 0.139 0.477

Speaker 0.158 0.739

Lamp 0.198 1.295

Phone 0.217 0.421

Sofa 0.155 0.490

Bench 0.218 0.624

Display 0.253 0.755

Car 0.125 0.268

Table 1. Comparison of Chamfer Distance (lower is better)

tion across the dataset. With such a small sample, even 293
just one or two failure cases with poor overlap could signif- 294
icantly skew the averaged F-Score downwards for that cate- 295
gory. This sampling issue is especially pronounced for cate- 296
gories with higher intra-class shape variation like rifles and 297
phones which can exhibit diverse geometries. In contrast, 298
our Chamfer Distance results demonstrate clear advantages 299
for SculptFormer in accurately reconstructing precise sur- 300
face geometry details for these same categories. Cham- 301
fer Distance directly measures averaged vertex-to-surface 302
distances, making it less sensitive to sampling issues com- 303
pared to the volume intersection metric used for F-Scores. 304
It’s likely that with a larger, more representative sample, 305
the F-Scores for these categories would better align with 306
the geometry precision indicated by our Chamfer Distance 307
numbers. Unfortunately, we were limited by computational 308
resources in calculating scores over more examples per cat- 309
egory for our evaluation. Promisingly, for smoother, more 310
chunk-like object categories where we expect less variation 311
across samples, like airplanes (0.7915 vs 0.8238) and cars 312
(0.7801 vs 0.8415), our F-Scores are very competitive with 313
Pixel2Mesh despite the sampling limits. This suggests the 314
sampling issue is less pronounced when intra-class geome- 315
tries are more consistent. 316

4. Conclusion 317

We present a transformer-boosted 3D mesh reconstruc- 318
tion framework that builds upon the Pixel2Mesh method 319
by adding hierarchical transformer blocks to effectively 320
combine localized geodesic information from each ver- 321
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Category SculptFormer (ours) Pixel2Mesh

Vessel 0.5500 0.6999

Cabinet 0.6863 0.7719

Table 0.6505 0.7920

Chair 0.6808 0.7042

Rifle 0.4664 0.8347

Airplane 0.7915 0.8238

Speaker 0.7161 0.6561

Lamp 0.6780 0.6150

Phone 0.5505 0.8286

Sofa 0.7162 0.6983

Bench 0.6187 0.7186

Display 0.5749 0.6701

Car 0.7801 0.8415

Table 2. Comparison of F-score (higher is better)

tex’s neighboring regions with global context. Our re-322
sults show an improved performance as compared to the323
original Pixel2Mesh. At the time of writing, two simi-324
lar architectures, T-Pixel2Mesh [8] and InstantMesh [6],325
which also utilize transformers and a novel Large Recon-326
struction Model (LRM) based architecture to improve mesh327
generation quality have also very recently released. We328
hope our work encourages future work that utilizes other329
transformer-based architectures for improved 3D recon-330
struction models.331

5. Individual Contributions332

Evan ran experiments to replicate Pixel2Mesh’s Chamfer333
distance results for each of the chosen 13 object categories,334
while Shrika ran experiments to replicate Pixel2Mesh’s F-335
score results for each of the chosen 13 object categories.336
We both worked together to make significant changes to337
the original Pixel2Mesh model architecture and incorporate338
global, intermediate, and local transformer blocks as out-339
lined in our paper. Shrika focused on changing the network340
for feature extraction from VGG-16 to Resnet50 and attach-341
ing the global transformer to the Resnet50 and the underly-342
ing graph convolutional network (GCN). Evan then focused343
on attaching the intermediate and local transformer mod-344
ules to work with the global module, Resnet, and the GCN.345
We tested each of our respective portions of work, ensuring346
that each incremental addition would work with the rest of347
the architecture. Once our architecture was set up correctly,348
we each ran multiple experiments each day with varying349
configurations of batch size, learning rate, learning rate de-350

cay, and various other parameters when deemed necessary. 351
We each had to run many experiments initially since our 352
runs would fail prematurely. Later on, we could only train 353
a few times a day since the training runs would take several 354
hours, and we would terminate them prematurely if results 355
did not appear to be promising. Shrika prepared code to 356
visualize the qualitative results. Evan worked on scripting 357
portions of the testing process and setting up the data. We 358
both tried to collect qualitative metrics from the Pixel2Mesh 359
implementation, but due to a bug when using their visual- 360
izer that we could not figure out during result generation, 361
we could not provide those results, even though quantita- 362
tive results were replicated. Thus, qualitative results were 363
taken directly from the Pixel2Mesh paper. All sections of 364
the paper were co-written, revised, and looked over by both 365
of us. We each created one table of results. We both worked 366
on creating the figure for our approach. 367
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Derek Nowrouzezahrai Aaron Courville Sai Rajeswar,395
Fahim Mannan. Pix2shape: Towards unsupervised learning396
of 3d scenes from images using a view-based representation.397
In International Journal of Computer Vision, 2020. 2398

[8] Keke He Junwei Zhu-Ying Tai Chengjie Wang Yinda Zhang399
Yanwei Fu Shijie Zhang, Boyan Jiang. T-pixel2mesh: Com-400
bining global and local transformer for 3d mesh generation401
from a single image. In IEEE International Conference on402
Acoustics, Speech and Signal Processing (ICASSP), 2024. 5403

[9] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.404
Octree generating networks: Efficient convolutional archi-405
tectures for high-resolution 3d outputs. In IEEE Interna-406
tional Conference on Computer Vision (ICCV), 2017. 1407

[10] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei408
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh409
models from single rgb images. In European Conference on410
Computer Vision (ECCV), 2018. 1, 2411

6


	. Introduction
	. Related Work
	. Our Method

	. Methods
	. Base Architecture
	. Hierarchical Transformer Modules

	. Experimental Results And Analysis
	. Conclusion
	. Individual Contributions

